TweetSense: Recommending Hashtags for Orphaned Tweets by Exploiting Social Signals in Twitter by

نویسندگان

  • Manikandan Vijayakumar
  • Huan Liu
  • Hasan Davulcu
چکیده

Twitter is a micro-blogging platform where the users can be social, informational or both. In certain cases, users generate tweets that have no "hashtags" or "@mentions"; we call it an orphaned tweet. The user will be more interested to find more "context" of an orphaned tweet presumably to engage with his/her friend on that topic. Finding context for an Orphaned tweet manually is challenging because of larger social graph of a user , the enormous volume of tweets generated per second, topic diversity, and limited information from tweet length of 140 characters. To help the user to get the context of an orphaned tweet, this thesis aims at building a hashtag recommendation system called TweetSense, to suggest hashtags as a context or metadata for the orphaned tweets. This in turn would increase user’s social engagement and impact Twitter to maintain its monthly active online users in its social network. In contrast to other existing systems, this hashtag recommendation system recommends personalized hashtags by exploiting the social signals of users in Twitter. The novelty with this system is that it emphasizes on selecting the suitable candidate set of hashtags from the related tweets of user’s social graph (timeline).The system then rank them based on the combination of features scores computed from their tweet and user related features. It is evaluated based on its ability to predict suitable hashtags for a random sample of tweets whose existing hashtags are deliberately removed for evaluation. I present a detailed internal empirical evaluation of TweetSense, as well as an external evaluation in comparison with current state of the art method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Recommending Hashtags in Twitter Networks

Twitter network is currently overwhelmed by massive amount of tweets generated by its users. To effectively organize and search tweets, users have to depend on appropriate hashtags inserted into tweets. We begin our research on hashtags by first analyzing a Twitter dataset generated by more than 150,000 Singapore users over a three-month period. Among several interesting findings about hashtag ...

متن کامل

News-Topic Oriented Hashtag Recommendation in Twitter Based on Characteristic Co-occurrence Word Detection

Hashtags, which started to be widely used since 2007, are always utilized to mark keywords in tweets to categorize messages and form conversation for topics in Twitter. However, it is hard for users to use hashtags for sharing their opinions/interests/comments for their interesting topics. In this paper, we present a new approach for recommending news-topic oriented hashtags to help Twitter use...

متن کامل

An experimental study of the online social network Twitter

In this thesis we have conducted a statistical analysis of the online social network Twitter. Specifically, we focused on investigating a correlation between hashtags and increase of followers to determine whether the addition of hashtags to tweets produces new followers. We have designed a controlled experiment in which we create two groups of users: one tweeting with hashtags and the other tw...

متن کامل

Recommending #-Tags in Twitter

Twitter, currently the most popular microblogging tool available, is used to publish more than 140,000,000 messages a day. Many users use hashtags to categorize their tweets. However, hashtags are not restricted in any way in terms of usage or syntax which leads to a very heterogeneous set of hashtags occurring in the Twitter universe and therefore, decreases the search capabilities. In this pa...

متن کامل

An analysis of 14 Million tweets on hashtag-oriented spamming

Over the years, Twitter has become a popular platform for information dissemination and information gathering. However, the popularity of Twitter has attracted not only legitimate users but also spammers who exploit social graphs, popular keywords, and hashtags for malicious purposes. In this paper, we present a detailed analysis of the HSpam14 dataset, which contains 14 million tweets with spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014